27 research outputs found

    W-types in setoids

    Full text link
    W-types and their categorical analogue, initial algebras for polynomial endofunctors, are an important tool in predicative systems to replace transfinite recursion on well-orderings. Current arguments to obtain W-types in quotient completions rely on assumptions, like Uniqueness of Identity Proofs, or on constructions that involve recursion into a universe, that limit their applicability to a specific setting. We present an argument, verified in Coq, that instead uses dependent W-types in the underlying type theory to construct W-types in the setoid model. The immediate advantage is to have a proof more type-theoretic in flavour, which directly uses recursion on the underlying W-type to prove initiality. Furthermore, taking place in intensional type theory and not requiring any recursion into a universe, it may be generalised to various categorical quotient completions, with the aim of finding a uniform construction of extensional W-types.Comment: 17 pages, formalised in Coq; v2: added reference to formalisatio

    A comonad for Grothendieck fibrations

    Full text link
    We study the 2-category theory of Grothendieck fibrations in the 2-category of functors \ct{Cat}^{\ct{2}}. After redrawing a few general results in that context, we show that fibrations over a given base are pseudo-coalgebras for a 2-comonad on \ct{Cat} / \ct{B}. We use that result to explain how an arbitrary fibration is equivalent to one with a splitting

    B-systems and C-systems are equivalent

    Get PDF
    C-systems were defined by Cartmell as models of generalized algebraic theories. B-systems were defined by Voevodsky in his quest to formulate and prove an initiality conjecture for type theories. They play a crucial role in Voevodsky's construction of a syntactic C-system from a term monad. In this work, we construct an equivalence between the category of C-systems and the category of B-systems, thus proving a conjecture by Voevodsky

    Algebraic Presentations of Dependent Type Theories

    Get PDF
    C-systems were defined by Cartmell as models of generalized algebraic theories. B-systems were defined by Voevodsky in his quest to formulate and prove an initiality conjecture for type theories. They play a crucial role in Voevodsky's construction of a syntactic C-system from a term monad. In this work, we construct an equivalence between the category of C-systems and the category of B-systems, thus proving a conjecture by Voevodsky. We construct this equivalence as the restriction of an equivalence between more general structures, called CE-systems and E-systems, respectively. To this end, we identify C-systems and B-systems as "stratified" CE-systems and E-systems, respectively; that is, systems whose contexts are built iteratively via context extension, starting from the empty context

    Exact completion and type-theoretic structures

    No full text
    This thesis consists of four papers and is a contribution to the study of representations of extensional properties in intensional type theories using, mainly, the language and tools from category theory. Our main focus is on exact completions of categories with weak finite limits as a category-theoretic description of the setoid construction in Martin-Löf's intensional type theory. Paper I, which is joint work with Erik Palmgren, provides sufficient conditions for such an exact completion to produce a model of the system CETCS (Constructive Elementary Theory of the Category of Sets), a finite axiomatisation of the theory of well-pointed locally cartesian closed pretoposes with a natural numbers object and enough projectives. In particular, we use a condition inspired by Aczel's set-theoretic Fullness Axiom to obtain the local cartesian closure of an exact completion. As an application, we obtain a simple  uniform proof that the category of setoids is a model of CETCS. Paper II was prompted by the discovery of an overlooked issue in the characterisationof local cartesian closure for exact completions due to Carboni and Rosolini. In this paper we clarify the problem, show that their characterisation is still valid when the base category has finite limits, and provide a complete solution in the general case of a category with weak finite limits. In paper III we generalise the approach used in paper I to obtain the local cartesian closure of an exact completion to arbitrary categories with finite limits. We then show how this condition inspired by the Fullness Axiom naturally arises in several homotopy categories and apply this result to obtain the local cartesian closure of the exact completion of the homotopy category of spaces, thus answering a question left open by Marino Gran and Enrico Vitale. Finally, in paper IV we abandon the pure category-theoretic approach and instead present a type-theoretic construction, formalised in Coq, of W-types in the category of setoids from dependent W-types in the underlying intensional theory. In particular, contrary to previous approaches, this construction does not require the assumption of Uniqueness of Identity Proofs nor recursion into a type universe.At the time of the doctoral defense, the following papers were unpublished and had a status as follows: Paper 1: Manuscript. Paper 2: Manuscript. Paper 3: Manuscript. Paper 4: Manuscript.</p
    corecore